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SUMMARY

In this paper an adaptive parallel multigrid method and an application example for the 2D incompressible
Navier–Stokes equations are described. The strategy of the adaptivity in the sense of local grid refinement in the
multigrid context is the multilevel adaptive technique (MLAT) suggested by Brandt. The parallelization of this
method on scalable parallel systems is based on the portable communication library CLIC and the message-
passing standards: PARMACS, PVM and MPI. The specific problem considered in this work is a two-
dimensional hole pressure problem in which a Poiseuille channel flow is disturbed by a cavity on one side of the
channel. Near geometric singularities a very fine grid is needed for obtaining an accurate solution of the pressure
value. Two important issues of the efficiency of adaptive parallel multigrid algorithms, namely the data
redistribution strategy and the refinement criterion, are discussed here. For approximate dynamic load balancing,
new data in the adaptive steps are redistributed into distributed memories in different processors of the parallel
system by block remapping. Among several refinement criteria tested in this work, the most suitable one for the
specific problem is that based on finite-element residuals from the point of view of self-adaptivity and
computational efficiency, since it is a kind of error indicator and can stop refinement algorithms in a natural way
for a given tolerance. Comparisons between different global grids without and with local refinement have shown
the advantages of the self-adaptive technique, as this can save computer memory and speed up the computing
time several times without impairing the numerical accuracy.# 1997 By John Wiley & Sons, Ltd.Int. J. Numer.
Methods Fluids24, 875–892, 1997.
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INTRODUCTION

To fit the requirement of more and more accurate results from CFD practice, computational grids for
discretization equation systems should be finer and finer, which correspondingly increases the
computing time and memory requirements dramatically. On the hardware side, highly parallel
computer systems with distributed memory offer the possibility of treating such large-size problems.
On the numeric and software side, adaptive methods and algorithms can be used to avoid unnecessary
globally fine grids and deal with problems in an economic way. The combination of parallel
computing and adaptivity as well as the fastest solution method, multigrid, is therefore very attractive
for grand challenges in CFD.
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For several years, multigrid solution algorithms have been parallelized successfully, e.g. in the LiSS
package developed at SCAI=GMD.1 This package is based on the portable communication library for
block-structured grids, CLIC,2 and the standard message-passing libraries PARMACS, PVM and
MPI. Because the parallel efficiency is dependent upon the load-balancing and communication
requirements between different parallel processes, the parallel strategy in the above package is grid
partitioning, which means that the flow domain is divided into nearly equal-sized structured blocks
and the data are distributed blockwise into different parallel processes. Interprocess communications
are needed only for boundary data exchanges. For large-size problems, in which the ratio of the
number of grid points on interblock boundaries and the number of interior grid points is very small
except at the coarsest level of the multigrid algorithm, the communication in the solution steps can be
reduced optimally. Therefore in this package the parallel efficiency is very high.

Upon incorporating adaptivity into such parallel algorithms, a difficulty in redistributing data
generated in the adaptive steps to each load balancing occurs. In self-adaptive algorithms a built-in
detector first finds the critical subregions in the computational domain at run time and then refines
these subregions locally. The refinement process should be stopped at a certain refinement level or
when a given tolerance is reached. The data structure of the refined grids is unknowna priori and is in
general inhomogeneous in each block. It turns out that the load in parallel processes could be quite
different if data on refinement stages were to stay in the same processes; then the parallel efficiency
would be limited strong by the adaptivity. For this reason a data redistribution strategy is necessary.
In fact, exact load balancing for dynamic adaptive algorithms is almost impossible and certainly
inefficient, because the communication could require very sophisticated programming and a long
computing time. In this case an approximate but efficient load-balancing strategy is more appropriate.

The data structure in the adaptive steps depends on the adaptive multigrid technique and the grid
type. In LiSS the multilevel adaptive technique (MLAT) suggested by Brandt3,4 has been
implemented, in which refined grids are treated as extended fine grid levels in the multigrid context.
Compared with the strategy of generating globally adaptive grids, local refinement has the advantage
that the computational grids need not be globally modified, and that strong distortion and non-
uniformity at each level can be avoided. Therefore the following steps are reasonable for approximate
load balancing: (a) the type of refined grids in each block should be the same as the primary grid,
namely structured grids (logically quadrilateral in 2D and hexahedral in 3D cases); (b) the refined
grids are divided into several sub-blocks so that the data redistribution can be realized by sub-block
mapping; (c) according to a crude approximation—the computing load is proportional to the number
of grid points in a process—the sub-blocks in the adaptive step are redivided and remapped; (d) the
sub-blocks should be remapped parallely either to nearest neighbours or along embedded trees. The
detailed description of the above steps implemented in LiSS is very complicated. We concentrate
only on point (c) in this paper. Clearly, in an adaptive algorithm the parallel efficiency can decrease
owing to data redistribution and extra communication. However, the drastic reduction of memory
requirements and computing time has shown the advantage of adaptive parallel multigrid algorithms.

Another important factor influencing the efficiency of a dynamic adaptive algorithm is the adaptive
criterion employed in it. The choice of adaptive criterion is non-unique and problem-dependent. A
suitable criterion for a specific problem should find the refined regions in the flow domain
automatically, make them smaller in the next adaptive steps and be capable of stopping the
refinement in a natural way. These are the principle requirements for a self-adaptive criterion. In the
‘classical’ engineering approach, criteria based on variable gradients are often used, but they may not
fit the above requirements.5 In the work of Sonar5 and Ritzdorf and Stu¨ben,6 finite element residuals
have been used as the refinement criterion for the Euler equations. According to the analysis, this
kind of criterion seems to be a suitable one for two-dimensional inviscid compressible transonic
flows. In our work this criterion will be used for the incompressible Navier–Stokes equations
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and compared with other criteria based on gradient-like control functions in the sense of self-
adaptivity.

ADAPTIVITY AND PARALLELIZATION

The governing equations are the two-dimensional steady incompressible Navier–Stokes equations.
The upwind finite volume discretization scheme used in this work is based on the work of Dick and
Linden. This discretization of the convective fluxes has only first-order accuracy. To obtain second-
order accuracy, defect correction can be used, in which the right-hand sides of the first-order discrete
equations are corrected after every internal iteration by the difference between residuals from the
second-order and first-order formulations. In Reference 8 it has been shown that the defect correction
converges to the second-order solution. The internal iteration is based on FMG. The defect correction
is only carried out on the finest grid with the van Leerk-scheme9 for k � 0.

The standard full approximate multigrid scheme (FAS-FMG) does not need to be explained in
detail. For the purpose of robustness, only the F-cycle is used for first-order accuracy and the V-cycle
in the defect correction processing.

MLAT strategy

To explain the MLAT strategy, let us suppose thatOh
l �l � 0; 1; 2; � � � ; lc� is a hierarchy of global

grids, whereOh
0 is the finest grid andOh

ÿl �l is the level number,l � 1; 2; 3; � � � ; lf , andh indicates the
characteristic mesh size on level 0) are locally refined grids in subdomains of the original
computational domain. Such subdomains are detected successively at run time by a certain criterion.
As in FMG, in the MLAT at any refinement levelÿl (on grid Oh

ÿl) the corresponding two-grid
method usesOh

ÿl and �O
h
ÿl�1, where �O

h
ÿl�1 is defined as

�O
h
ÿl�1 :� O

h
l \ O

h
ÿl�1: �1�

Along the block boundaries ofOh
ÿl, boundary values are interpolated from the current approximation

on the coarse gridOh
ÿl�1. Figure 1 shows an example of grids at different refinement levels.

Refinement criteria

From the point of view of computational efficiency we desire that a criterion should be self-
adaptive in the sense of error estimation and that the refinement will stop in a natural way for a given
tolerance. In the ‘classical’ adaptive approach, gradients of relevant flow variables are used as
detectors for adaption. They can detect e.g. locations of shocks and boundary layers, but have nothing
to do with error control, and the values of control qualities may not decrease at a higher refinement
level. Thus they cannot yield an automatic stop for a given tolerance in adaptive algorithms. Sonar5

has used finite element ideas in adaptive control and compared several refinement indicators based on
finite element (FE) residuals for finite volume solutions of the Euler equations. They were in theL2-,
Hÿ1- andL1-norm. In Reference 5 it has been shown that these criteria are well suited for detecting
regions which have to be refined for solving two-dimensional inviscid compressible flows, e.g. near
shocks. They are proportional to the local mesh sizeh and decrease when the mesh size decreases
during the refinement process. In contrast with them, refinement indicators based on gradients of flow
variables cannot be used in an automatically self-adapting code. In the work of Ritzdorf and Stu¨ben6

the criterion based on FE residuals in theL1-norm has been accepted and implemented successfully in
LiSS for the Euler equations.

Analogously to References 5 and 6, control qualities based on FE residuals in theHÿ1- and L1-
norm for the incompressible Navier–Stokes equations can be introduced.
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Suppose that the discretized equation islq � 0; then the residual of the equation is

rh
:�lqh

: �2�

Around any pointP at the current level the corresponding rectangular control volume is subdivided
into two triangular elementsD1 andD2 (see Figure 2). In principle, quadratic elements can be chosen
also, but the implementation of triangular elements is easier. The values needed for residual
calculations on the four corners of the two triangles can be interpolated linearly from the nine
neighbouring grid points. The control qualitycL1 in the L1-norm is defined as

cL1 � krh
kL1 �

P

k�1;2
q�u;v;p

�

Dk

jrh
kqjdO; �3�

Figure 1. Composite, global and refined grids in MLAT process

Figure 2. Finite elementsD1 andD2 used for residual calculation in control volumeO

878 J. WU ET AL.

INT. J. NUMER. METHODS FLUIDS, VOL24: 875–892 (1997) # 1997 by John Wiley & Sons, Ltd.



were indexk denotes a value in thekth triangleDk andrh
kq is the approximate value of theq-residual

overDk . That is obtained via the shape functionsfkm and the valuesqm on finite element pointm; for
example, forq � u is found

jrh
kuj �

P

m�1;2;3
jrh

kujmfkm; �4�

jrh
kujm � j2um@xum � vm@yum � um@yvm ÿ @xpm ÿ 1=Re�@xxum � @yyum�j: �5�

All primitive variables with indexm are average values from neighbouring points and the first and
second derivatives are obtained via the weak formulation and shape functions.

The control qualitycHÿ1 in the Hÿ1-norm is defined as

cHÿ1 � krh
kHÿ1 � max

k�1;2
m�1;2;3
q�u;v;p

�

�

�

�

�

Dk

rh
kqfkmdO

�

�

�

�

kfkmkH1
0 �O�

: �6�

In equation (6),kfkmkH1
0 �O�

is defined as

kfkmkH1
0 �O�

�

������������������������������������������������������������������������������������������������������

�
�
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kmdO�

�

Dk

�@xfkm�
2dO�

�

Dk

�@yfkm�
2 dO

�

s

�7�

and is evaluated exactly.
For comparison, criteria based on control qualities of distances to singularities and on gradient-like

qualities can be tested. They may be written as

cd � max
h

jx ÿ x*j
;

h

jy ÿ y*j

� �

; �8�

cq � max
m

jDqj � h
Dq

Dxi

�

�

�

�

�

�

�

�

; �9�

wherex* and y* are the co-ordinates of a singularity and incq a dimension of the mesh sizeh is
added to the gradient for the self-adaptivity. If a region near a solid wall is interesting, the control
qualitycq for q � u; v can be very small because of the no-slip condition. In this casecq should be
scaled by the absolute value of this component as

cq � max
m

jDqj

e� jqj

� �

; 0 < e� 1: �10�

In refinement processes after theÿl � 1 level the chosen control quality is computed. If there is a
region withc5l for a given tolerancel, the refinement at levelÿl should be carried out. The
tolerancel is problem- and criterion-specific.

Parallelization

An efficient way to achieve load balancing for block-structured CFD problems on distributed
memory systems is grid partitioning. In grid partitioning, the computational domain is divided into
several blocks. Every block has approximately the same number of grid points. A host process
distributes each block to a different node process; each node process receives the grid and its overlap.
Then the solution process starts with exchanging and updating necessary data on block boundaries
between processes. After global convergence, each node process sends the results to the host
process.10 In this method, data exchange between process (process communication) is only necessary
on the overlapping regions along interior boundaries. The grid-partitioning strategy is realized in
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LiSS, a numerical solution package for partial differential equations with multigrid on sequential and
parallel computers.1 LiSS is parallelized with the communication library CLIC for block-structured
grids. It is based on the message-passing interface PARMACS11 and can be ported on other
interfaces, PVM and MPI.

Load balancing for MLAT

The refined grids in each block may not necessarily have the same number of grid points and we
should remap the refined grids to different processes for load balancing. It is desirable that each
process should have the same number of refined grid points, but this is very complicated and
sometimes impossible or inefficient, because the number of grid points in each refined area can be
extremely different. According to Ritzdorf and Stu¨ben,6 in LiSS the following remapping strategy has
been used.

1. At refinement levelÿ l for each blocki (each process has only one block) the number of cells to
be refined isni. If

P

i ni � 0, the refinement will be stopped.
2. The optimal cell number to be redistributed to each processor,n�P� �

P

i ni=P, is computed and
broadcasted.

3. All blocks with ni 4 n�P� are distributed to different processes.
4. The new optimal cell number for the remaining~P processors is recomputed:~n�P� � ~Nÿl

=
~P, with

~Nÿl
�

P

ni>n�P� ni. If there is any block withni 4 ~n�P�, it should be distributed to a process.
5. Step 4 will be repeated until there is no block withni 4 ~n�P�.
6. Blocks with ni > ~n�P� should be divided intomi sub-blocks, wheremi is an integer,

mi � max�m4 ni=~n
�P�
�. Each of the sub-blocks has approximately the same cell number

~nik
� ni=mi.

7. Because the total sub-block numberM �

P

i mi 4
P

ni=~n
�P�
�

~Nÿl
=~n�P�4 ~P, there may be

some free processors. In this case, blocksi containing the largest sub-blocks are resubdivided
with mi � 1 until all processors are busy.

The above is only a coarse description. A detailed one is very sophisticated. This strategy does not
guarantee exact load balancing and some steps above need to be improved. However, in practice it is
a satisfactory load-balancing strategy and relatively easy to programme. In the current version of
LiSS, all remapping steps described above can be performed in parallel and all communications can
be arranged either to nearest neighbours or along embedded trees. As commented in Reference 6, the
communication overhead is merelyO�log P�. In practice the time for remapping work is negligible
compared with the total work.

Within the multigrid cycle at each refinement levelÿ l the data on gridOh
ÿl�1 required for

interpolation should first be sent to the related processes of gridO
h
ÿl and then interpolations and

corrections can be performed. By fine-to-coarse transfer all necessary computations should be done at
the finer level (evaluation of residuals, application of full weighting operator, etc.). Only data relevant
to the coarse level computation (residuals and current approximations) are redistributed. Examples of
the redistribution strategy are shown in the following subsection.

Parallel efficiency and measure of load balancing

In Reference 6 the measurable parallel efficiencye�P� has been introduced:

e�P� �
1
P

P

i�1;���;P
ai

max
i�1;���;P

�ai � ci�
; �11�
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whereP denotes the number of processors andai andci denote respectively the (wall-clock) time for
the arithmetic and the total communication time (including idle time) on processori. We can define
the parallel efficiency at levelÿl to beeÿl

�P� as in equation (11). Suppose that the parallel algorithm
does not involve substantial additional arithmetic and the floating point performance does not depend
sensitively on the mesh size. Thene�P� is approximately the real measure of parallel efficiency.

For exact load balancing, every processor (i.e. every block should have the same number of grid
points or cells. However, in refinement processes this may not be the case. For justifying a code in
real applications, we can introduce a measure of load balancingeÿl

r for local refinements at levelÿl
and Er for the global refinement process. We defineeÿl

r as

e
ÿl
r �

P

i�1;2;���;P
nÿl

i

nÿl
maxP

� 1 ÿ
1

Pnÿl
max

P

i�1;2;...;P
�nÿl

max ÿ nÿl
i �; �12�

where nÿl
i denotes the number of points in processori at levelÿl and nÿl

max � max
i�1;2;...;P

nÿl
i . The

definition of er is

er �

P

l�0;1;...
Nÿl

g aÿl

P

l�0;1;...
Pnÿl

maxa
ÿl ; �13�

whereNÿl
g �

P

i�1;...;P nÿl
i is the number of grid points at levelÿl andaÿl is the average work unit

for one grid point at levelÿl relative to the work at level 0 (a0
� 1). We assume in the following text

aÿl
� 1.

Generally we haveeÿl
�P�4eÿl

r . If we suppose that each interior grid at the same level has the
same work unit,ai � ni, and neglectci, theneÿl

r is identical with the parallel efficiencyeÿl
�P�. If the

number of grid points in several blocks is much larger than in the other blocks, theneÿl
r tends to be

smaller for largerP. According to the remapping strategy described in the previous subsection, when
only a few blocks in the original grid need refinements and the processor number of the parallel
system is moderate, it is more flexible to remap sub-blocks in the refinement phases. In this case
P

i�1;2;...;P�n
ÿl
max ÿ nÿl

i � in (12) is small and better load balancing can be obtained.

RESULTS FOR HOLE PRESSURE PROBLEM

The specific flow problem to be tested in the present work is the hole pressure problem. As depicted
in Figure 3, the flow in a uniform channel of heightH � 1 and total lengthL is disturbed by a cavity
of breadthb and depthd on the lower wall of the channel. The problem is to determine the hole
pressure, i.e. the difference between the normal stress exerted by the fluid on the bottom of the cavity
and that on the channel wall opposite the cavity opening. The hole pressure provides a
characterization of non-Newtonian fluids and is also interesting in investigations of Newtonian
fluid flows. There are several numerical computations of hole pressure problems for Newtonian fluids
in the literature, e.g. by Malkus,12 Richards and Townsend,13 Jackson and Finlayson,14 Crochetet
al.15 and Lodgeet al.16 In Reference 16 the computational results and their accuracy have been
discussed in detail and compared with experimental data. However, Reference 16 is concerned only
with the case of small Reynolds numbers.

In the present work this problem is chosen for testing the present local refinement strategy, since it
is a practical problem with application background, the flow domain is simple and there are geometric
singularities. The numerical study first examines the comparison with the results from Reference 16
for a small Reynolds number,Re � 60, with and without local refinement. Then the case ofRe � 500
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is discussed. All the computations in this work were carried out on an IBM Scalable POWERparallel
System (SP2) with 10 node processors.

Re � 60 without local refinement

The inlet and outlet velocity distributiong�y� in Figure 3 is the same as that of Poiseuille flow in a
uniform channel and defined as

g�y� � y�1 ÿ y�: �14�

All the other boundary conditions on the solid walls are no-slip conditions. From the above definition
the average inlet velocityU and the flow rateQ are both 1=6. The breadthb and depthd of the cavity
are both 1 andL is 5. The Reynolds number is defined asRe � Ub/n, wheren is the kinematic
viscosity. The dimensionless normal stresss22 acting on both regions of interest, i.e. on the channel
wall opposite the cavity opening,s1, and on the bottom of the cavity,s2, is given by

s22 � ÿp � 2vy; �15�

where the viscosity coefficient does not appear owing to the dimensionless formulation. The hole
pressure is defined as the mean difference between the normal stresses on the average intervalss1 and
s2 (see Figure 3):

D �
1
s1

�

s1

s22�x; 1�dx ÿ
1
s2

�

s2

s22�x;ÿ1�dx: �16�

Here s1 ands2 are equal tos.
It should be noticed that the definition of the Reynolds number in Reference 16 is six times smaller

than that in the real computation.
Because of the geometric singularity, a dense grid should be used in the regions near the two upper

corners of the cavity. This has also been done in Reference 16 with the finite element method. For the
purpose of testing local refinement, it is better to use a globally uniform grid withhx � hy, wherehx

andhy are the mesh sizes in directionsx andy, so that we can determine whether the regions that need
to be refined can be detected by our criteria. The flow domain is divided into six rectangular load-
balancing blocks as shown in Figure 4. In this case only six processors (exclusive of the host
processor) of the parallel computer are needed. Every block has the same number of cells. Because
the number of grid points along interior boundaries in each block is not the same and owing to the
fact that these grid points belong to only one block, exact load balancing is generally very difficult
and unnecessary. The unit length of mesh size without refinement ish � hx � hy � 1=T . For

Figure 3. Schematic description of flow domain
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convenience in the following text, ‘T� 128’, ‘T� 64’, etc. denote cases of global grids with
T � 128; 64; . . . .

The first example is T� 128. In this case there are approximately 16,640 grid points in all blocks
andh � 1=128. The global grid is finer than in Reference 16. The computed streamline pattern and
pressure contours are plotted in Figure 5 forRe � 60. For comparison the pictures are drawn
vertically. All the contour lines have the same values as in Reference 16. For different lengthss the
computed hole pressure is presented in Table I. The hole pressures are almost identical with those in
Reference 16.

It should be pointed out that the calculated pressure values at the sharp corners of the cavity, points
3 and 4, depend on the local mesh size. The order of the truncation error in a circle with an
approximate radiusr of orderO�h*� (h* is the local grid spacing) around these points is lower than
that outside the circle. Therefore they are geometric singular points. For the Poisson equations this
has been discussed in References 17 and 18. The purpose of employing fine grids is to reduce the
radius of the circle and to solve the flow outside the circle near the singularities more accurately
rather than to improve the accuracy of the pressure values at the sharp corners. In this work the
calculated values of the pressure at the singularities from different grids are presented only as
comparative references for the solution accuracy near the singularities.

Table II shows the comparison between the computed pressure at positions0; � � � ; 4 in Figure 3,
wherep0 � p�0; 0�; p1 � p�0; 1�; p2 � p�0;ÿ1�; p3 � p�ÿ0�5; 0� and p4 � p�0�5; 0�. Also included

Figure 4. Domain decomposition

Figure 5. (a) Streamlines and (b) pressure contours forRe � 60
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are the hole pressureD and the maximal solution residualjrjmax of the Navier–Stokes equations after
15 defect correction steps. From Table II and Figure 5 we can see that the critical regions of this flow
should be near the two singular points. Compared with T� 128, the relative differences ofp0; p1 and
p2 from T� 64 are smaller than 3%. Sincevy � 1 and the hole pressure can be approximated by
p2 ÿ p1, theD-value is not influenced strongly by the mesh size ifh is small enough. On the other
hand, the differences ofp3 and p4 between coarse and fine grid are quite large owing to the
discretization errors and they do not converge as the mesh size is decreased, as explained above. This
is also shown in Figure 6, in which the computed pressure distribution is plotted atx � 0�5, near the
right singularity.

Table I. Hole pressure for differents

s � 0�0 s � 0�1 s � 0�5 s � 1�0

Reference 16 0�3795 0�3796 0�3795 0�3829
Present 0�3774 0�3775 0�3786 0�3827

Figure 6. Pressure distribution atx � 0�5 for Re � 60 without local refinement

Table II. Computed pressure values on different grids

T p0 p1 p2 p3 p4 D jrjmax

16 0�3807 0�0097 0�3811 ÿ0�2930 0�2786 0�3735 1610ÿ7

32 0�3921 0�0125 0�3883 ÿ0�4031 0�3109 0�3802 5610ÿ8

64 0�3956 0�0134 0�3905 ÿ0�5486 0�3926 0�3822 3610ÿ8

128 0�3928 0�0137 0�3912 ÿ0�7267 0�5101 0�3827 5610ÿ7
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Re=60 with local refinement

It is known that the grid should be finer near the two geometric singular points than it is elsewhere,
such as near the inlet or in the lower side of the cavity. Of course, if we are interested in the eddies
near the lower corners for largeRe, a very fine grid in these regions is needed. However, a coarse grid
in these regions cannot affect the global accuracy substantially.

The smaller the distance to the singular points is, the larger the discretization errors of pressure are
and therefore the finer the grid should be. From this point of view we can use a criterion based on the
ratio of the mesh size and the distance to a singularity, namelycd defined by equation (8). Let us
refine the grid withT � 16 recursively three times with a given tolerancel � 1=8 for the reason that
at places withd > 8h there is no obvious influence of the singularities. The minimal mesh size after
three refinement steps is the same withT � 128. After 15 steps of defect correction the maximal
global residualjrjmax � 10ÿ7 has been reached. The relative differences ofp3 andp4 from T � 128
and 2�4% and 3�8%. The difference of the hole pressureD is only 0�2% as shown in Table III. The
domain decomposition in Figure 4 is chosen such that the two geometrical singularities are not in the
same block. With the current strategy in LiSS there are 166 166 4 elements (levels 0,. . . ,ÿ3) in
each block to be dealt with. This is 16 times less than by T� 128.

These refinement results are satisfactory, but this criterion is not a self-adapting one. We want to
find criteria to do similar work self-adaptively. Let us now test the other criteria based on the control
qualities introduced above, namelycL1 ;cHÿ1 andcq (q � u; v; p).

In Figure 7 the contours of control qualitiesc for T� 32 are shown. Obviouslycu is unsuitable as
a self-adapting indicator because it is concentrated near the channel wall, where very fine grids are
unnecessary for a small Reynolds number. The contours of other control qualities are concentrated
near the singularities. Among them,cL1 andcHÿ1 are similar to each other, so we need only discuss
cL1 later. Analogously to the above discussion, in the following and in Figure 9, ‘Ref_L1’, ‘Ref_v’
and ‘Ref_p’ indicate the refinement cases with criteria based oncL1 ;c

v
andcp respectively.

In the following computations the global grid is generated withT � 16 and three refinement steps
are carried out. The refinement tolerances are chosen so that there is no completely refined block.
They arelL1 � 0�33 � 10ÿ3 and l

v;p � 0�4. The global and refined grids are shown in Figure 8.
Although the different criteria have led to quite different geometries of the refined regions, all results
in Table III from locally refined grids agree well with those from T� 128. The distribution of
computed pressure near the right singularity atx � 0�5 is plotted in Figure 9. All curves denoting
results with different criteria are very close to the results of T� 128. ForRe� 60 the discretization
errors are dependent on mesh sizes only near the local singularities, while the global values from
boundary integrals, such as the hole pressureD in Table III, are changed only slightly by the local
refinement.

The maxima of the control qualities around the two singularities at every refinement level,c
1
max

and c2
max, the number of grid points,Nÿl

g , the maximum of grid points,Nÿl
max � nÿl

maxP, and the
measures of load balancing,eÿl

r and er (approximately foraÿl
� 1 in equation (13)), are given in

Table III. Computed pressure values on different grids

p0 p1 p2 p3 p4 D Ng jrjmax

T � 128 0�3928 0�0137 0�3912 ÿ0�7267 0�5101 0�3827 99846 5610ÿ7

cd 0�3931 0�0103 0�3901 ÿ0�7096 0�4908 0�3819 7088 1610ÿ7

cL1 0�3878 0�0103 0�3882 ÿ0�7175 0�5149 0�3832 4814 7610ÿ7

c
v

0�3935 0�0124 0�3878 ÿ0�7275 0�5131 0�3776 9026 6610ÿ6

cp 0�3941 0�0104 0�3906 ÿ0�7282 0�5091 0�3819 4890 2610ÿ7
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Table IV. The maxima ofcL1 have been reduced proportionally to the mesh size. This means that
cL1 � hn andn � 1. At the third level,cL1 is smaller than the tolerancel � 0�33 � 10ÿ3, so further
refinement can be stopped automatically. The maxima for Ref_v decrease only slowly and those for
Ref_p even increase around the singularities. This means thatc

v;p � hn andn < 1. In this case the
refinement process does not tend to a natural stop. For Ref_L1 the measure of load balancing at each

Figure 7. Contours of control qualities

Figure 8. Locally refined grids forRe � 60
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Figure 9. Pressure distribution atx � 0�5 for Re � 60 with local refinement

Table IV. Maxima of control qualities and load-balancing efficiencies

l c
1
max c

2
max Nÿl

g Nÿl
max eÿl

r

cL1 0 2�0686 10ÿ3 1�482610ÿ3 1750 1782 0�982
l � 0�33 � 10ÿ3 1 1�0306 10ÿ3 0�709610ÿ3 2408 3354 0�736

2 0�6166 10ÿ3 0�378610ÿ3 452 570 0�793
3 0�3146 10ÿ3 0�193610ÿ3 204 270 0�756

Global valuesNg;Nmax; er 4814 5976 0�805

c
v

0 1�1167 1�3233 1750 1782 0�982
l � 0�4 1 0�8507 1�0214 1690 2142 0�789

2 0�782 0�7838 2968 7326 0�405
3 0�7059 0�6896 2618 3990 0�656

Global valuesNq;Nmax; er 9026 15240 0�592

cp 0 0�9815 1�3521 1750 1782 0�982
l � 0�4 1 0�9073 1�3658 1288 1890 0�681

2 0�9287 1�2145 994 1326 0�75
3 1�0602 1�165 858 1734 0�495

Global valueNq;Nmax; er 4890 6732 0�726
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level, eÿl
r , is over 70%. The global load-balancing measureer is over 80%. The refined regions for

Ref_v and Ref_p only shrink slowly and more grid points are needed in the refinement steps. The
number of grid points at refinement levels with lower load balancing is large; for example, for Ref_v
at levelÿ2, eÿl

r � 0�405 andNÿl
g � 2968, while for Ref_p at levelÿ3, eÿl

r � 0�495 andNÿl
g � 858.

Thus the global load balancing is lower owing to the non-optimal grid point distribution at refinement
levels (for Ref_v it is about 60% and for Ref_p it is about 72�6%).

It appears that the computational accuracy does not depend on the refinement criteria directly when
the regions near singularities are refined, but the control qualitycL1 of FE residuals is more suitable
to serve as a refinement criterion near a geometric singularity since it provides residual estimations
and allows automatic self-adaptation. After the computation it is certain that the residuals with the
computed results in an FE norm are within a given tolerance. The gradient-like qualitiesc

v
andcp

have nothing to do with the residual or error estimations and do not reach a natural stop of the
refinement processes. The better load balancing by Ref_L1 does not depend directly on the
refinement criterion also. However, the drastically reduced refinement regions using this criterion
reduce the influence of the lower load balancing at the refinement levels in comparison with the
global load balancing.

Re � 500 with local refinement

In this subsection we shall discuss the case of a relatively high Reynolds number,Re � 500,
mainly from a numerical point of view without concern for its physical meaning.

The computation with refinement is started from a global grid withT � 32. The refinement
criterion is based oncL1 and the tolerance isl � 0�104 � 10ÿ4 (with this tolerance there will be no
globally refined blocks and the refinement process will be stopped at refinement levellf � 5
automatically). The computed results of Ref_2, Ref_3 and Ref_4 (denotinglf � 2; 3; 4) will be
discussed below. The maximal residual after 25 steps of defect correction isO�10ÿ5

�.
At each level the whole refined region is divided into six blocks. Some of the refined grids and

subdomains are shown in Figure 10. In this figure the numbers in blocks are sub-block numbers and
the numbers outside the blocks are codes indicating boundary conditions along interior boundaries
between grids of different refinement levels. The refined regions are also concentrated around the
singularities and are reduced drastically at higher refinement levels. Near the singularities the
pressure contours computed from T� 128 are reproduced by the computations with local refinement;
see Figure 11.

The computed pressure at positions0; � � � ; 4, the hole pressure, the number of grid points at all
refinement levels,Ng, the minimal mesh sizehmin and the measure of global load balancing,er, for
T� 128, T� 32, Ref_2, Ref_3 and Ref_4 are given in Table V. The computed hole pressureD for
T� 128 is 0�7413, about twice that forRe � 60. The results of Ref_2, Ref_3 and Ref_4 differs by
less than 1% from those of T� 128. The results forp0; p1; p2 and D from T� 32 are obviously
improved by local refinement. With the same minimal mesh sizehmin � 1=128 the computed
pressuresp3 and p4 at two singularities from T� 128 and Ref_2 agree well. For Ref_3 and Ref_4
with further refinements,p3 andp4 are different from T� 128. Figure 12 shows the improvement of
T� 32 by the local refinement. The pressure distributions for T� 128 and Ref_2 nearx � 0�5; y � 0
are identical and the results for Ref_3 and Ref_4 with more refinements are quite close to T� 128 up
to jDyj5 0�03. In regions ofjDyj < 0�03 the curves with finer grids are smoother than those of
T� 128. We believe that the results for Ref_3 and Ref_4 should be more accurate because of their
finer grids.
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Figure 11. Pressure contours forRe � 500

Figure 10. Grids and subdomains at refinement levels
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The total number of grid points for Ref_4 is 22,410, which is about 3�4 times the number of grid
points for T � 32 without refinement. Compared with the case of T� 128, the computer memory
requirement is reduced 4�46 times. The global parallel efficiencye�P� (defined in equation (11)) with
the local refinement based on the wall-block time is nearly 68�5%, which is satisfactory. In Figure 10
it is also shown how the sub-blocks at the four refinement levels are remapped into different
processes. All the refinement process have good global load balancing,er � 80% in Table V. It can
be seen from Figure 10 that if we could remap the sub-blocks in a more flexible way, instead of only
sending one sub-block into one processor, the parallel efficiency might be improved. Unsatisfactory
examples of the present remapping strategy are block 6 at levelÿ1 and block 5 at levelÿ3 in Figure
10. On the other hand, if the number of grid points in refined regions is reduced very quickly as in the
case discussed here, i.e.Nÿ3

g � 0�05Nÿ2
g and Nÿ4

g � 0�01Nÿ3
g in Table V, this unfavourable

remapping cannot affect the global load balancing strongly. Another important factor for the real
computational efficiency may be the relation between the geometry of refined regions and the MLAT

Figure 12. Pressure distribution atx � 0�5 for Re � 500 with local refinement

Table V. Computed pressure values on different grids forRe � 500

p0 p1 p2 p3 p4 D Ng hmin er

T�128 0�6456 0�0612 0�7838 ÿ1�0896 1�7535 0�7413 99846 1=128 0�99
T�32 0�6072 0�0516 0�7516 ÿ1�1432 1�9885 0�7170 6566 1=32 0�99
Ref_2 0�6507 0�0611 0�7856 ÿ1�0898 1�7477 0�7464 21074 1=128 0�788
Ref_3 0�6545 0�0620 0�7890 ÿ1�2023 1�8245 0�7491 22186 1=256 0�811
Ref_4 0�6558 0�0622 0�7898 ÿ1�3843 1�9729 0�7498 22410 1=512 0�800
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efficiency and the ratio of communication and arithmetic operations in the refinement steps. These are
not discussed in this paper.

Figure 13 shows the convergence history in the sense ofjrjnmax=jrj
0
max for two cases, T� 128 and

Ref_4. After 10 defect correction steps the relative residuals are identical. From the run time
documents of two examples we have observed that the maximal solution time (including
communication time) in one processor with Ref_4 (wall-clock time 73�86 s) is 4�2 times less than
with T � 128 (wall-clock time 312�4 s). This means about 4�2 times speed-up by the adaptive
technique.

CONCLUDING REMARKS

From the observations and discussion above we can conclude the following:

1. The adaptivity in the sense of local grid refinement is advantageous since it can solve these
problems in a faster and cheaper way.

2. The adaptive parallel multigrid algorithm introduced in the present work is very efficient on
message-passing parallel systems.

3. To obtain higher computational accuracy, different local refinement criteria can be used, but the
FE residual criterion tested in this work is favourable compared with those based on gradient-
like control qualities near a geometrical singularity in the self-adapting sense.

4. The relation between the parallel efficiencies and the MLAT has not been addressed in this
paper. According to the remapping strategy described in this work, the smaller a local
refinement region is, the more flexible the remapping process is and the easier we can achieve
easier load balancing. In the case of quickly shrunk refinement regions (e.g. with the FE
residual criterion) the influence of the lower load balancing at the refinement levels on the
global load balancing can be reduced.

5. In the future a more efficient remapping strategy and refinement criteria for 3D problems should
be developed and tested.

Figure 13. Convergence history forRe � 500
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